Reference: Nakani S, et al. (2006) Characterization of four covalently-linked yeast cytochrome c/cytochrome c peroxidase complexes: Evidence for electrostatic interaction between bound cytochrome c molecules. Biochemistry 45(48):14371-8

Reference Help

Abstract


Four covalent complexes between recombinant yeast cytochrome c and cytochrome c peroxidase (rCcP) were synthesized via disulfide bond formation using specifically designed protein mutants (Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580). One of the complexes, designated V5C/K79C, has cysteine residues replacing valine-5 in rCcP and lysine-79 in cytochrome c with disulfide bond formation between these residues linking the two proteins. The V5C/K79C complex has the covalently bound cytochrome c located on the back-side of cytochrome c peroxidase, approximately 180 degrees from the primary cytochrome c-binding site as defined by the crystallographic structure of the 1:1 noncovalent complex (Pelletier, H., and Kraut J. (1992) Science 258, 1748-1755). Three other complexes have the covalently bound cytochrome c located approximately 90 degrees from the primary binding site and are designated K12C/K79C, N78C/K79C, and K264C/K79C, respectively. Steady-state kinetic studies were used to investigate the catalytic properties of the covalent complexes at both 10 and 100 mM ionic strength at pH 7.5. All four covalent complexes have catalytic activities similar to those of rCcP (within a factor of 2). A comprehensive study of the ionic strength dependence of the steady-state kinetic properties of the V5C/K79C complex provides evidence for significant electrostatic repulsion between the two cytochromes bound in the 2:1 complex at low ionic strength and shows that the electrostatic repulsion decreases as the ionic strength of the buffer increases.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Nakani S, Vitello LB, Erman JE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference