Reference: Mitterbauer R, et al. (2004) Toxin-dependent utilization of engineered ribosomal protein L3 limits trichothecene resistance in transgenic plants. Plant Biotechnol J 2(4):329-40

Reference Help

Abstract


The contamination of agricultural products with Fusarium mycotoxins is a problem of world-wide importance. Fusarium graminearum and related species, which are important pathogens of small grain cereals and maize, produce an economically important and structurally diverse class of toxins designated trichothecenes. Trichothecenes inhibit eukaryotic protein synthesis. Therefore, a proposed role for these fungal toxins in plant disease development is to block or delay the expression of defence-related proteins induced by the plant. Using yeast as a model system, we have identified several mutations in the gene encoding ribosomal protein L3 (Rpl3), which confer semi-dominant resistance to trichothecenes. Expression of an engineered tomato RPL3 (LeRPL3) cDNA, into which one of the amino acid changes identified in yeast was introduced, improved the ability of transgenic tobacco plants to adapt to the trichothecene deoxynivalenol (DON), but did not result in constitutive resistance. We show here that, in the presence of wild-type Rpl3 protein, the engineered Rpl3 protein is not utilized, unless yeast transformants or the transgenic plants are challenged with sublethal amounts of toxin. Our data from yeast two-hybrid experiments suggest that affinity for the ribosome assembly factor Rrb1p could be altered by the toxin resistance-conferring mutation. This toxin-dependent utilization of the resistance-conferring Rpl3 protein could seriously limit efforts to utilize the identified target alterations in transgenic crops to increase trichothecene tolerance and Fusarium resistance.

Reference Type
Journal Article
Authors
Mitterbauer R, Poppenberger B, Raditschnig A, Lucyshyn D, Lemmens M, Glössl J, Adam G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference