Take our Survey

Reference: Simader H, et al. (2006) Structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA-aminoacylation and nuclear-export cofactor Arc1p reveal a novel function for an old fold. Acta Crystallogr D Biol Crystallogr 62(Pt 12):1510-9

Reference Help

Abstract

Eukaryotic aminoacyl-tRNA synthetases (aaRS) frequently contain additional appended domains that are absent from their prokaryotic counterparts which mediate complex formation between eukaryotic aaRS and cofactors of aminoacylation and translation. However, the structural basis of such interactions has remained elusive. The heteromerization domain of yeast glutamyl-tRNA synthetase (GluRS) has been cloned, expressed, purified and crystallized in space group C222(1), with unit-cell parameters a = 52, b = 107, c = 168 A. Phase information was obtained from multiple-wavelength anomalous dispersion with selenomethionine to 2.5 A resolution and the structure, comprising two monomers per asymmetric unit, was determined and refined to 1.9 A resolution. The structure of the interacting domain of its accessory protein Arc1p was determined and refined to 1.9 A resolution in a crystal form containing 20 monomers organized in five tetramers per asymmetric unit (space group C2, unit-cell parameters a = 222, b = 89, c = 127 A, beta = 99.4 degrees ). Both domains adopt a GST-like fold, demonstrating a novel role for this fold as a protein-protein interaction module.

Reference Type
Journal Article
Authors
Simader H, Hothorn M, Suck D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference