Reference: Cherest H, et al. (1975) Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae. J Bacteriol 123(2):428-35

Reference Help

Abstract


A Saccharomyces cerevisiae mutant strain unable to grow at 38 C and bearing a modified methionyl-transfer ribonucleic acid (tRNA) synthetase has been studied. It has been shown that, in this mutant, the percentage of tRNAmet charged in vivo paralleled the degree of repressibility of methionine biosynthetic enzymes by exogenous methionine. On the contrary, the repression mediated by exogenous S-adenosylmethionine does not correlate with complete acylation of tRNAmet. Althought McLaughlin and Hartwell reported previously that the thermosensitivity and the defect in the methionyl-tRNA synthetase were due to the same genetic lesion (1969), no diffenence could be found in the methionyl-tRNA synthetase activity or in the pattern of repressibility of methionine biosynthetic pathway after growth at the premissive and at a semipermissive temperature. It appears that the mutant also exhibits some other modified characters that render unlikely the existence of only one genetic lesion in this strain. A genetic study of this mutant was undertaken which led to the conclusion that the thermosensitivity and the other defects are not related to the methionyl-tRNA synthetase modification. It was shown that the modified repressibility of methionine biosynthetic enzymes by methionine and the lack of acylation of tRNAmet in vivo follow the methionyl-tRNA synthetase modification. These results are in favor of the idea that methionyl-tRNAmet, more likely than methionine, is implicated in the regulation of the biosynthesis of methionine.

Reference Type
Journal Article
Authors
Cherest H, Surdin-Kerjan Y, De Robichon-Szulmajster H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference