Reference: Gonzalez B, et al. (2000) Dynamic in vivo (31)P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose-limited chemostat culture during the aerobic-anaerobic shift. Yeast 16(6):483-97

Reference Help

Abstract


The purpose of this work was to analyse in vivo the influence of sudden oxygen depletion on Saccharomyces cerevisiae, grown in glucose-limited chemostat culture, using a recently developed cyclone reactor coupled with (31)P NMR spectroscopy. Before, during and after the transition, intracellular and extracellular phosphorylated metabolites as well as the pHs in the different cellular compartments were monitored with a time resolution of 2.5 min. The employed integrated NMR bioreactor system allowed the defined glucose-limited continuous cultivation of yeast at a density of 75 g DW/l and a p(O(2)) of 30% air saturation. A purely oxidative metabolism was maintained at all times. In vivo (31)P NMR spectra obtained were of excellent quality and even allowed the detection of phosphoenolpyruvate (PEP). During the switch from aerobic to anaerobic conditions, a rapid, significant decrease of intracellular ATP and PEP levels was observed and the cytoplasmic pH decreased from 7.5 to 6.8. This change, which was accompanied by a transient influx of extracellular inorganic phosphate (P(i)), appeared to correlate linearly with the decrease of the ATP concentration, suggesting that the cause of the partial collapse of the plasma membrane pH gradient was a reduced availability of ATP. The complete phosphorous balance established from our measurement data showed that polyphosphate was not the source of the increased intracellular P(i). The derived intracellular P(i), ATP and ADP concentration data confirmed that the glycolytic flux at the level of glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and enolase enzymes is mainly controlled by thermodynamic constraints.

Reference Type
Journal Article
Authors
Gonzalez B, de Graaf A, Renaud M, Sahm H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference