Reference: Arumugam P, et al. (2006) Cohesin's ATPase activity is stimulated by the C-terminal Winged-Helix domain of its kleisin subunit. Curr Biol 16(20):1998-2008

Reference Help

Abstract


BACKGROUND: Cohesin, a multisubunit protein complex conserved from yeast to humans, holds sister chromatids together from the onset of replication to their separation during anaphase. Cohesin consists of four core subunits, namely Smc1, Smc3, Scc1, and Scc3. Smc1 and Smc3 proteins are characterized by 50-nm-long anti-parallel coiled coils flanked by a globular hinge domain and an ABC-like ATPase head domain. Whereas Smc1 and Smc3 heterodimerize via their hinge domains, the kleisin subunit Scc1 connects their ATPase heads, and this results in the formation of a large ring. Biochemical studies suggest that cohesin might trap sister chromatids within its ring, and genetic evidence suggests that ATP hydrolysis is required for the stable association of cohesin with chromosomes. However, the precise role of the ATPase domains remains enigmatic. RESULTS: Characterization of cohesin's ATPase activity suggests that hydrolysis depends on the binding of ATP to both Smc1 and Smc3 heads. However, ATP hydrolysis at the two active sites is not per se cooperative. We show that the C-terminal winged-helix domain of Scc1 stimulates the ATPase activity of the Smc1/Smc3 heterodimer by promoting ATP binding to Smc1's head. In contrast, we do not detect any effect of Scc1's N-terminal domain on Smc1/Smc3 ATPase activity. CONCLUSIONS: Our studies reveal that Scc1 not only connects the Smc1 and Smc3 ATPase heads but also regulates their ATPase activity.

Reference Type
Journal Article
Authors
Arumugam P, Nishino T, Haering CH, Gruber S, Nasmyth K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference