Reference: Ahn SH, et al. (2006) Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10. Mol Cell 24(2):211-20

Reference Help

Abstract

Chromatin alterations, induced by covalent histone modifications, mediate a wide range of DNA-templated processes, including apoptosis. Apoptotic chromatin condensation has been causally linked to the phosphorylation of histone H2B (serine 14 in human; serine 10 in yeast, H2BS10ph) in human and yeast cells. Here, we extend these studies by demonstrating a unidirectional, crosstalk pathway between H2BS10 phosphorylation and lysine 11 acetylation (H2BK11ac) in yeast. We demonstrate that the H2BK11 acetyl mark, which exists in growing yeast, is removed upon H(2)O(2) treatment but before H2BS10ph occurs, in a unidirectional fashion. H2B K11Q mutants are resistant to cell death elicited by H(2)O(2), while H2B K11R mutants that mimic deacetylation promote cell death. Our results suggest that Hos3 HDAC deacetylates H2BK11ac, which in turn mediates H2BS10ph by Ste20 kinase. Together, these studies underscore a concerted series of enzyme reactions governing histone modifications that promote a switch from cell proliferation to cell death.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Ahn SH, Diaz RL, Grunstein M, Allis CD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference