Reference: Hood-Degrenier JK, et al. (2007) Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae. Curr Genet 51(1):1-18

Reference Help

Abstract


Subcellular localization is an important determinant of substrate and functional specificity for cyclin-cyclin dependent kinase (CDK) complexes. This work addresses the cytoplasmic function of the budding yeast mitotic cyclin Clb2, which is mostly nuclear but is also present in the bulk cytoplasm and at the mother-bud neck. Clb2 contains two leucine-rich nuclear export signals (NESs)-one of which we newly describe here-that maintain its presence in the cytoplasm. Yeast strains bearing mutations in one or both of these NESs have elongated buds, indicative of a G2/M cell cycle delay. A small number of these cells exhibit a filamentous-like morphology under conditions that do not normally induce filamentous growth. These phenotypes are enhanced by deletion of the other three mitotic cyclins (CLB1,3,4) and are dependent on expression of Swe1, the yeast Cdk1 inhibitory kinase. Deltaclb1,3,4 Deltabud3 cells, which fail to localize Clb2 to the bud neck, also exhibit a Swe1-dependent elongated bud phenotype. Our results support a model in which cytoplasmic Clb2-Cdk1 is required for timely inactivation of Swe1 at the G2/M transition and bud neck targeting of Clb2 contributes to the efficiency of this process. Cytoplasmic Clb2 may also be important for repression of filamentous growth.

Reference Type
Journal Article
Authors
Hood-Degrenier JK, Boulton CN, Lyo V
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference