Reference: Lallet S, et al. (2006) Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae. Mol Microbiol 62(2):438-52

Reference Help

Abstract

In the yeast Saccharomyces cerevisiae, the Msn2 transcription factor is a key element in mediating the environmental stress response (ESR), leading to the induction of 100-200 genes through the cis-acting Stress Response Element (STRE) in response to various physico-chemical stresses and nutritional variations. This activation is accompanied by a stress-induced hyperphosphorylation of Msn2. By a systematic screening we identified two proteins essential in this process: (i) the cyclin-dependent Ssn3/Srb10 protein kinase, part of a module of the RNA polymerase II mediator, which has already been shown to be involved in hyperphosphorylation and degradation of Msn2 upon stress, and (ii) Gal11, a component of the mediator. In a gal11 mutant, stress-induced hyperphosphorylation of Msn2 is abolished, stress-induced transcription of Msn2-dependent genes is decreased and Msn2 degradation is impaired. Rgr1, another component of the mediator, is also critical for this hyperphosphorylation, indicating that the integrity of the mediator is required for this process. Moreover the transactivating region of Msn2 interacts in vitro with the N-terminal domain of Gal11. These results point out the role of the mediator, especially its Gal11 subunit, in the hyperphosphorylation and degradation of Msn2 during stress response.

Reference Type
Journal Article
Authors
Lallet S, Garreau H, Garmendia-Torres C, Szestakowska D, Boy-Marcotte E, Quevillon-Cheruel S, Jacquet M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference