Reference: Choi K, et al. (2005) Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cell Signal 17(12):1533-41

Reference Help

Abstract


Genetic manipulation of diphosphoinositol polyphosphate synthesis impacts many biological processes (reviewed in S.B. Shears, Biochem. J. 377, 2004, 265-280). These observations lacked a cell-signalling context, until the recent discovery that bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4 or "InsP8") accumulates rapidly in mammalian cells in response to hyperosmotic stress (X. Pesesse, K. Choi, T. Zhang, and S. B. Shears J. Biol. Chem. 279, 2004, 43378-43381). We now investigate how widely applicable is this new stress-response. [PP]2-InsP4 did not respond to mechanical strain or oxidative stress in mammalian cells. Furthermore, despite tight conservation of many molecular stress responses across the phylogenetic spectrum, we show that cellular [PP]2-InsP4 levels do not respond significantly to osmotic imbalance, heat stress and salt toxicity in Saccharomyces cerevisiae. In contrast, we show that [PP]2-InsP4 is a novel sensor of mild thermal stress in mammalian cells: [PP]2-InsP4 levels increased 3-4 fold when cells were cooled from 37 to 33 degrees C, or heated to 42 degrees C. Increases in [PP]2-InsP4 levels following heat-shock were evident <5 min, and reversible (t(1/2)=7 min) once cells were returned to 37 degrees C. These responses were blocked by pharmacological inhibition of the ERK/MEK pathway. Additional control processes may lie upstream of [PP]2-InsP4 synthesis, which was synergistically activated when heat stress and osmotic stress were combined. Our data add to the repertoire of signaling responses following thermal challenges, a topic of current interest for its possible therapeutic value.

Reference Type
Journal Article
Authors
Choi K, Mollapour E, Shears SB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference