Take our Survey

Reference: Chiani F, et al. (2006) SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res 34(19):5426-37

Reference Help

Abstract

The null mutation of the SIR2 gene in Saccharomyces cerevisiae has been associated with a series of different phenotypes including loss of transcriptional silencing, genome instability and replicative aging. Thus, the SIR2 gene product is an important constituent of the yeast cell. SIR2 orthologues and paralogues have been discovered in organisms ranging from bacteria to man, underscoring the pivotal role of this protein. Here we report that a plasmid introduced into sir2Delta cells accumulates more negative supercoils compared to the same plasmid introduced into wild-type (WT) cells. This effect appears to be directly related to SIR2 expression as shown by the reduction of negative supercoiling when SIR2 is overexpressed, and does not depend on the number or positioning of nucleosomes on plasmids. Our results indicate that this new phenotype is due to the lack of Sir2p histone deacetylase activity in the sir2Delta strain, because only the H4-K16 residue of the histone octamer undergoes an alteration of its acetylation state. A model proposing interference with the replication machinery is discussed.

Reference Type
Journal Article
Authors
Chiani F, Felice FD, Camilloni G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference