Reference: Wiles AM, et al. (2006) Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. Microbiology 152(Pt 10):3133-45

Reference Help

Abstract


Small peptides (2-5 amino acid residues) are transported into Saccharomyces cerevisiae via two transport systems: PTR (Peptide TRansport) for di-/tripeptides and OPT (OligoPeptide Transport) for oligopeptides of 4-5 amino acids in length. Although regulation of the PTR system has been studied in some detail, neither the regulation of the OPT family nor the environmental conditions under which family members are normally expressed have been well studied in S. cerevisiae. Using a lacZ reporter gene construct fused to 1 kb DNA from upstream of the genes OPT1 and OPT2, which encode the two S. cerevisiae oligopeptide transporters, the relative expression levels of these genes were measured in a variety of environmental conditions. Uptake assays were also conducted to measure functional protein levels at the plasma membrane. It was found that OPT1 was up-regulated in sulfur-free medium, and that Ptr3p and Ssy1p, proteins involved in regulating the di-/tripeptide transporter encoding gene PTR2 via amino acid sensing, were required for OPT1 expression in a sulfur-free environment. In contrast, as measured by response to toxic tetrapeptide and by real-time PCR, OPT1 was not regulated through Cup9p, which is a repressor for PTR2 expression, although Cup9p did repress OPT2 expression. In addition, all of the 20 naturally occurring amino acids, except the sulfur-containing amino acids methionine and cysteine, up-regulated OPT1, with the greatest change in expression observed when cells were grown in sulfur-free medium. These data demonstrate that regulation of the OPT system has both similarities and differences to regulation of the PTR system, allowing the yeast cell to adapt its utilization of small peptides to various environmental conditions.

Reference Type
Journal Article
Authors
Wiles AM, Cai H, Naider F, Becker JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference