Take our Survey

Reference: Saikia M, et al. (2006) A systematic, ligation-based approach to study RNA modifications. RNA 12(11):2025-33

Reference Help

Abstract


Over 100 different chemical types of modifications have been identified in thousands of sites in tRNAs, rRNAs, mRNAs, small nuclear RNAs, and other RNAs. Some modifications are highly conserved, while others are more specialized. They include methylation of bases and the ribose backbone, rotation, and reduction of uridine, base deamination, elaborate addition of ring structures, carbohydrate moieties, and more. We have developed a systematic approach to detect and quantify the extent of known RNA modifications. The method is based on the enzymatic ligation of oligonucleotides using the modified or unmodified RNA as the template. The efficiency of ligation is very sensitive to the presence and the type of modifications. First, two oligo pairs for each type of modification are identified. One pair greatly prefers ligation using the unmodified RNA template over the modified RNA template or vice versa. The other pair has equal reactivity with unmodified and modified RNA. Second, separate ligations with each of the two oligo pairs and the total RNA mixture are performed to detect the presence or absence of modifications. Multiple modification sites can be examined in the same ligation reaction. The feasibility of this method is demonstrated for three 2'O-methyl modification sites in yeast rRNA.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural | Comparative Study
Authors
Saikia M, Dai Q, Decatur WA, Fournier MJ, Piccirilli JA, Pan T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference