Take our Survey

Reference: Gutierrez-Cirlos EB, et al. (2002) Failure to insert the iron-sulfur cluster into the Rieske iron-sulfur protein impairs both center N and center P of the cytochrome bc1 complex. J Biol Chem 277(52):50703-9

Reference Help

Abstract


Mutation of a serine that forms a hydrogen bond to the iron-sulfur cluster of the Rieske iron-sulfur protein to a cysteine results in a respiratory-deficient yeast strain due to formation of iron-sulfur protein lacking the iron-sulfur cluster. The Rieske apoprotein lacking the iron-sulfur cluster is inserted into both monomers of the dimeric cytochrome bc(1) complex and processed to mature size, but the protein lacking iron-sulfur cluster is more susceptible to proteolysis. In addition, the protein environment of center P in one half of the dimer is affected by failure to insert the iron-sulfur cluster as indicated by the fact that only one molecule of myxothiazol can be bound to the cytochrome bc(1) dimer. Although the bc(1) complex lacking the Rieske iron-sulfur cluster cannot oxidize ubiquinol through center P, rates of reduction of cytochrome b by menaquinol through center N are normal. However, less cytochrome b is reduced through center N, and only one molecule of antimycin can be bound at center N in the bc(1) dimer lacking iron-sulfur cluster. These results indicate that failure to insert the [2Fe-2S] cluster impairs assembly of the Rieske protein into the bc(1) complex and that this interferes with proper assembly of both center P and center N in one half of the dimeric enzyme.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gutierrez-Cirlos EB, Merbitz-Zahradnik T, Trumpower BL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference