Take our Survey

Reference: Chang SC, et al. (2002) The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J Biol Chem 277(46):43836-43

Reference Help

Abstract

We have demonstrated that the human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase (InsP(4) 5-kinase). The cDNA of the human gene contained a putative open reading frame of 1251 bp encoding 416 amino acids with 83.6% identity compared with the rat protein. The substrate specificity of the recombinant human protein demonstrated preference for Ins(1,3,4,6)P(4) with a catalytic efficiency (V(max)/K(m)) 43-fold greater than that of Ins(1,3,4,5)P(4) and 2-fold greater than that of Ins(1,4,5)P(3). The apparent V(max) was 114 nmol of Ins(1,3,4,5,6)P(5) formed/min/mg of protein, and the apparent K(m) was 0.3 microm Ins(1,3,4,6)P(4). The functional homolog in yeast is Ipk2p, and ipk2-null yeast strains do not synthesize Ins(1,3,4,5,6)P(5) or InsP(6). Synthesis of these compounds was restored by transformation with wild-type yeast IPK2 but not with human InsP(4) 5-kinase. Thus the human gene does not complement for the loss of the yeast gene because yeast cells do not contain the substrate Ins(1,3,4,6)P(4), and the reaction of the human protein with Ins(1,3,4,5)P(4) is insufficient to effect rescue or synthesis of InsP(5) and InsP(6). Therefore the major activity of human InsP(4) 5-kinase is phosphorylation at the D-5 position, and the pathways for synthesis of Ins(1,3,4,5,6)P(5) in yeast versus humans are different.

Reference Type
Journal Article
Authors
Chang SC, Miller AL, Feng Y, Wente SR, Majerus PW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference