Reference: Lener D, et al. (2002) Mutating conserved residues in the ribonuclease H domain of Ty3 reverse transcriptase affects specialized cleavage events. J Biol Chem 277(29):26486-95

Reference Help

Abstract


The reverse transcriptase-associated ribonuclease H (RT/RNase H) domains from the gypsy group of retrotransposons, of which Ty3 is a member, share considerable sequence homology with their retroviral counterparts. However, the gypsy elements have a conserved tyrosine (position 459 in Ty3 RT) instead of the conserved histidine in the catalytic center of retroviral RTs such as at position 539 of HIV-1. In addition, the gypsy group shows conservation of histidine adjacent to the third of the metal-chelating carboxylate residues, which is Asp-426 of Ty3 RT. The role of these and additional catalytic residues was assessed with purified recombinant enzymes and through the ability of Ty3 mutants to support transposition in Saccaromyces cerevisiae. Although all mutations had minimal impact on DNA polymerase function, amidation of Asp-358, Glu-401, and Asp-426 eliminated Mg(2+)- and Mn(2+)-dependent RNase H function. Replacing His-427 and Tyr-459 with Ala and Asp-469 with Asn resulted in reduced RNase H activity in the presence of Mg(2+), whereas in the presence of Mn(2+) these mutants displayed a lack of turnover. Despite this, mutations at all positions were lethal for transposition. To reconcile these apparently contradictory findings, the efficiency of specialized RNase H-mediated events was examined for each enzyme. Mutants retaining RNase H activity on a heteropolymeric RNA.DNA hybrid failed to support DNA strand transfer and release of the (+) strand polypurine tract primer from (+) RNA, suggesting that interrupting one or both of these events might account for the transposition defect.

Reference Type
Journal Article
Authors
Lener D, Budihas SR, Le Grice SF
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference