Reference: Pandit S, et al. (2006) Inhibition of a spliceosome turnover pathway suppresses splicing defects. Proc Natl Acad Sci U S A 103(37):13700-5

Reference Help

Abstract

Defects in assembly are suggested to signal the dissociation of faulty splicing complexes. A yeast genetic screen was performed to identify components of the putative discard pathway. Weak mutant alleles of SPP382 (also called NTR1) were found to suppress defects in two proteins required for spliceosome activation, Prp38p and Prp8p. Spp382p is shown necessary for cellular splicing, with premRNA and, for some alleles, excised intron, accumulating after inactivation. Like spp382-1, a mutant allele of AAR2 was identified in this suppressor screen. Like Spp382p, Aar2p has a reported role in spliceosome recycling and is found with Spp382p in a complex recovered with a mutant version of the spliceosomal core protein Prp8p. Possible insight into to the spp382 suppressor phenotype is provided by the observation that defective splicing complexes lacking the 5' exon cleavage intermediate are recovered by a tandem affinity purification-tagged Spp382 derivative. Stringent proteomic and two-hybrid analyses show that Spp382p also interacts with Cwc23p, a DNA J-like protein present in the spliceosome and copurified with the Prp43p DExD/H-box ATPase. Spp382p binds Prp43p and Prp43p requires Spp382p for intron release from the spliceosome. Consistent with a related function in the removal of defective complexes, three prp43 mutants are also shown to suppress splicing defects, with efficiencies inversely proportionate to the measured ATPase activities. These and related genetic data support the existence of a Spp382p-dependent turnover pathway acting on defective spliceosomes.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Pandit S, Lynn B, Rymond BC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference