Reference: Schnell JR, et al. (1998) Insertion of telomere repeat sequence decreases plasmid DNA condensation by cobalt (III) hexaammine. Biophys J 74(3):1484-91

Reference Help

Abstract


Telomere repeat sequence (TRS) DNA is found at the termini of most eukaryotic chromosomes. The sequences are highly repetitive and G-rich (e.g., [C(1-3)A/TG(1-3)]n for the yeast Saccharomyces cerevisiae) and are packaged into nonnucleosomal protein-DNA structures in vivo. We have used total intensity light scattering and electron microscopy to monitor the effects of yeast TRS inserts on in vitro DNA condensation by cobalt (III) hexaammine. Insertion of 72 bp of TRS into a 3.3-kb plasmid depresses condensation as seen by light scattering and results in a 22% decrease in condensate thickness as measured by electron microscopy. Analysis of toroidal condensate dimensions suggests that the growth stages of condensation are inhibited by the presence of a TRS insert. The depression in total light scattering intensity is greater when the plasmid is linearized with the TRS at an end (39-49%) than when linearized with the TRS in the interior (18-22%). Circular dichroism of a 95-bp fragment containing the TRS insert gives a spectrum that is intermediate between the A-form and B-form, and the anomalous condensation behavior of the TRS suggests a noncanonical DNA structure. We speculate that under conditions in which the plasmid DNA condenses, the telomeric insert assumes a helical geometry that is similar to the A-form and is incompatible with packing into the otherwise B-form lattice of the condensate interior.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Schnell JR, Berman J, Bloomfield VA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference