Take our Survey

Reference: Wang T and Wu M (2006) An ATP-binding cassette transporter related to yeast vacuolar ScYCF1 is important for Cd sequestration in Chlamydomonas reinhardtii. Plant Cell Environ 29(10):1901-12

Reference Help

Abstract


We generated a Cd-sensitive insertional mutant, Cds18, in Chlamydomonas reinhardtii and elucidated the deletion of a 10 kb fragment containing the promoter and a portion of the coding region for CrMRP2 gene that silenced the transcription of CrMRP2 in mutant Cds18. The association between CrMRP2 and Cd sensitivity was confirmed by complementing mutant Cds18 with a cloned genomic DNA fragment containing the promoter and complete coding sequence for CrMRP2. The genomic region and the full-length cDNA for CrMRP2 were cloned and sequenced. Computer searches detected the significant resemblance of CrMRP2 with HsMRP1, AtMRP3 and ScYCF1, in Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae, respectively. All are members of the multidrug resistance-associated protein (MRP)/cystic fibrosis transmembrane conductance regulator (CFTR) subfamily of ATP-binding cassette (ABC) transporters. When the cDNA of CrMRP2 was cloned into the yeast expression vector pEGKT and transformed into the yeast mutant strain DTY168 lacking ScYCF1, it restored the function of ScYCF1, a yeast vacuolar glutathione (GSH)-conjugate ABC transporter. A putative vacuolar-targeting motif (T/I/K)LP(L/K/I) was detected in the N-terminal part of CrMRP2. In wild-type C. reinhardtii, CrMRP2 transcription was significantly up-regulated upon Cd treatment. Comparing with mutant Cds18, the wild-type algal cells accumulated and sequestered more Cd in the stable high molecular weight (HMW) phytochelatin (PC)-Cd complex; the labile low molecular weight (LMW) PC-Cd complex was detected in mutant Cds18 at an earlier stage of Cd treatment. This study demonstrated the expression of CrMRP2 in C. reinhardtii and implicated its function in the formation/accumulation of stable HMW PC-Cd complex.

Reference Type
Journal Article
Authors
Wang T, Wu M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference