Reference: Kuranda K, et al. (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61(5):1147-66

Reference Help

Abstract


Caffeine is a natural purine analogue that elicits pleiotropic effects leading ultimately to cell's death by a largely uncharacterized mechanism. Previous works have shown that this drug induces a rapid phosphorylation of the Mpk1p, the final mitogen-activated protein (MAP) kinase of the Pkc1p-mediated cell integrity pathway. In this work, we showed that this phosphorylation did not necessitate the main cell wall sensors Wsc1p and Mid2p, but was abolished upon deletion of ROM2 encoding a GDP/GTP exchange factor of Rho1p. We also showed that the caffeine-induced phosphorylation of Mpk1p was accompanied by a negligible activation of its main downstream target, the Rlm1p transcription factor. This result was consolidated by the finding that the loss of RLM1 had no consequence on the increased resistance of caffeine-treated cells to zymolyase, indicating that the cell wall modification caused by this drug is largely independent of transcriptional activation of Rlm1p-regulated genes. Additionally, the transcriptional programme elicited by caffeine resembled that of rapamycin, a potent inhibitor of the TOR1/2 kinases. Consistent with this analysis, we found that the caffeine-induced phosphorylation of Mpk1p was lost in a tor1Delta mutant. Moreover, a tor1Delta mutant was, like mutants defective in components of the Pkc1p-Mpk1p cascade, highly sensitive to caffeine. However, the hypersensitivity of a tor1 null mutant to this drug was rescued neither by sorbitol nor by adenine, which was found to outcompete caffeine effects specially on mutants in the PKC pathway. Altogether, these data indicated that Tor1 kinase is a target of caffeine, whose inhibition incidentally activates the Pkc1p-Mpk1p cascade, and that the caffeine-dependent phenotypes are largely dependent on inhibition of Tor1p-regulated cellular functions. Finally, we found that caffeine provoked, in a Rom2p-dependent manner, a transient drop in intracellular levels of cAMP, that was followed by change in expression of genes implicated in Ras/cAMP pathway. This result may pose Rom2p as a mediator in the interplay between Tor1p and the Ras/cAMP pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference