Reference: Xing S, et al. (2006) Redox regulation and flower development: a novel function for glutaredoxins. Plant Biol (Stuttg) 8(5):547-55

Reference Help

Abstract


Glutaredoxins (GRXs) are small, ubiquitous oxidoreductases that have been intensively studied in E. COLI, yeast and humans. They are involved in a large variety of cellular processes and exert a crucial function in the response to oxidative stress. GRXs can reduce disulfides by way of conserved cysteines, located in conserved active site motifs. As in E. COLI, yeast, and humans, GRXs with active sites of the CPYC and CGFS type are also found in lower and higher plants, however, little has been known about their function. Surprisingly, 21 GRXs from ARABIDOPSIS THALIANA contain a novel, plant-specific CC type motif. Lately, information on the function of CC type GRXs and redox regulation, in general, is accumulating. This review focuses on recent findings indicating that GRXs, glutathione and redox regulation, in general, seem to be involved in different processes of development, so far, namely in the formation of the flower. Recent advances in EST and genome sequencing projects allowed searching for the presence of the three different types of the GRX subclasses in other evolutionary informative plant species. A comparison of the GRX subclass composition from PHYSCOMITRELLA, PINUS, ORYZA, POPULUS, and ARABIDOPSIS is presented. This analysis revealed that only two CC type GRXs exist in the bryophyte PHYSCOMITRELLA and that the CC type GRXs group expanded during the evolution of land plants. The existence of a large CC type subclass in angiosperms supports the assumption that their capability to modify target protein activity posttranslationally has been integrated into crucial plant specific processes involved in higher plant development.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Xing S, Lauri A, Zachgo S
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference