Take our Survey

Reference: Young ET, et al. (2000) Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154(3):1053-68

Reference Help

Abstract

The genome of Saccharomyces cerevisiae contains numerous unstable microsatellite sequences. Mononucleotide and dinucleotide repeats are rarely found in ORFs, and when present in an ORF are frequently located in an intron or at the C terminus of the protein, suggesting that their instability is deleterious to gene function. DNA trinucleotide repeats (TNRs) are found at a higher-than-expected frequency within ORFs, and the amino acids encoded by the TNRs represent a biased set. TNRs are rarely conserved between genes with related sequences, suggesting high instability or a recent origin. The genes in which TNRs are most frequently found are related to cellular regulation. The protein structural database is notably lacking in proteins containing amino acid tracts, suggesting that they are not located in structured regions of a protein but are rather located between domains. This conclusion is consistent with the location of amino acid tracts in two protein families. The preferred location of TNRs within the ORFs of genes related to cellular regulation together with their instability suggest that TNRs could have an important role in speciation. Specifically, TNRs could serve as hot spots for recombination leading to domain swapping, or mutation of TNRs could allow rapid evolution of new domains of protein structure.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Young ET, Sloan JS, van Riper K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference