Take our Survey

Reference: Blinkovsky AM, et al. (2000) A non-specific aminopeptidase from Aspergillus. Biochim Biophys Acta 1480(1-2):171-81

Reference Help

Abstract


A fermentation broth supernatant of the Aspergillus oryzae strain ATCC20386 contains aminopeptidase activity that releases a wide variety of amino acids from natural peptides. The supernatant was fractionated by anion exchange chromatography. Based on the primary amino acid sequence data obtained from proteins in certain fractions, polymerase chain reaction (PCR) primers were made and a PCR product was generated. This PCR product was used to screen an A. oryzae cDNA library from which the full length gene was then obtained. Fusarium venenatum and A. oryzae were used as hosts for gene expression. Transformed strains of both F. venenatum and A. oryzae over-expressed an active aminopeptidase (E.C. 3.4.11), named aminopeptidase II. The recombinant enzyme from both fungal hosts appeared as smears on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After deglycosylation of the N-linked sugars, both samples were a sharp band at approximately 56 kDa and had identical N-terminal amino acid sequences. Aminopeptidase II is a metalloenzyme with, presumably, Zn in the active site. Using various natural peptides and para-nitroanilides (pNAs) of amino acids as substrates, the aminopeptidase was found to be non-specific. Only X-Pro bonds demonstrated resistance to hydrolysis catalyzed by this aminopeptidase. The optimal enzyme activity was observed at pH 9.5 and 55 degrees C. Among amino acid pNAs, Leu-pNA appears to have the highest value of bimolecular constant of 40 min(-1) mM(-1) (k(cat) = 230 min(-1); K(m) = 5.8 mM) at pH 7.5 and 21 degrees C. Among Xaa-Ala-Pro-Tyr-Lys-amide pentapeptides, the velocity of catalytic hydrolysis at pH 7.5 and 21 degrees C was in a decreasing order: Pro, Ala, Leu, Gly and Glu.

Reference Type
Journal Article
Authors
Blinkovsky AM, Byun T, Brown KM, Golightly EJ, Klotz AV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference