Reference: Davies BS and Rine J (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174(1):191-201

Reference Help

Abstract

Upc2p and Ecm22p are a pair of transcription factors responsible for the basal and induced expression of genes encoding enzymes of ergosterol biosynthesis in yeast (ERG genes). Upc2p plays a second role as a regulator of hypoxically expressed genes. Both sterols and heme depend upon molecular oxygen for their synthesis, and thus the levels of both have the potential to act as indicators of the oxygen environment of cells. Hap1p is a heme-dependent transcription factor that both Upc2 and Ecm22p depend upon for basal level expression of ERG genes. However, induction of both ERG genes and the hypoxically expressed DAN/TIR genes by Upc2p and Ecm22p occurred in response to sterol depletion rather than to heme depletion. Indeed, upon sterol depletion, Upc2p no longer required Hap1p to activate ERG genes. Mot3p, a broadly acting repressor/activator protein, was previously shown to repress ERG gene expression, but the mechanism was unclear. We established that Mot3p bound directly to Ecm22p and repressed Ecm22p- but not Upc2p-mediated gene induction.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Davies BS, Rine J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference