Reference: Alford B and Hecht SM (1978) 2'-Versus 3'-OH specificity in tRNA aminoacylation. Further support for the "secondary cognition" proposal. J Biol Chem 253(14):4844-50

Reference Help

Abstract

Purified Escherichia coli tRNAAla and tRNALys were each converted to modified species terminating in 2'- and 3'-deoxyadenosine. The modified species were tested as substrates for activation by their cognate aminoacyl-tRNA synthetases and for misacylation with phenylalanine by yeast phenylalanyl-tRNA synthetase. E. coli alanyl- and lysyl-tRNA synthetases normally aminoacylate their cognate tRNA's exclusively on the 3'-OH group, while yeast phenylalanyl-tRNA synthetase utilizes only the 2' position on its own tRNA. Therefore, the finding that the phenylalanyl-tRNA synthetase activated only those modified tRNAAla and tRNALys species terminating in 3'-deoxyadenosine indicated that the position of aminoacylation in this case was specified entirely by the enzyme, an observation relevant to the more general problem of the reason(s) for using a particular site for aminoacylation and maintaining positional specificity during evolution. Initial velocity studies were carried out using E. coli tRNAAla and both alanyl- and phenylalanyl-tRNA synthetases. As noted in other cases, activation of the modified and unmodified tRNA's had essentially the same associated Km values, but in each case the Vmax determined for the modified tRNA was smaller.FAU - Alford, .

Reference Type
Journal Article
Authors
Alford B, Hecht SM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference