Reference: Kotovic KM, et al. (2003) Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 23(16):5768-79

Reference Help

Abstract


Evidence that pre-mRNA processing events are temporally and, in some cases, mechanistically coupled to transcription has led to the proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. Here we address two key questions raised by this proposal: (i) whether the U1 snRNP, which binds to the 5' splice site of each intron, is recruited cotranscriptionally in vivo and, (ii) if so, where along the length of active genes the U1 snRNP is concentrated. Using chromatin immunoprecipitation (ChIP) in yeast, we show that elevated levels of the U1 snRNP were specifically detected in gene regions containing introns and downstream of introns but not along the length of intronless genes. In contrast to capping enzymes, which bind directly to Pol II, the U1 snRNP was poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP was dependent on RNA synthesis and was abolished by intron removal. Microarray analysis revealed that intron-containing genes were preferentially selected by ChIP with the U1 snRNP. Thus, U1 snRNP accumulation at genes correlated with the presence and position of introns, indicating that introns are necessary for cotranscriptional U1 snRNP recruitment and/or retention.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kotovic KM, Lockshon D, Boric L, Neugebauer KM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference