Take our Survey

Reference: Kaplan J, et al. (2006) Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta 1763(7):646-51

Reference Help

Abstract


All eukaryotes require iron although iron is not readily bioavailable. Organisms expend much effort in acquiring iron and in response have evolved multiple mechanisms to acquire iron. Because iron is essential, organisms prioritize the iron use when iron is limiting; iron-sparing enzymes or metabolic pathways are utilized at the expense of iron-rich enzymes. A large percentage of cellular iron containing proteins is devoted to oxygen binding or metabolism, therefore, changes in oxygen availability affect iron usage. Transcriptional and post-transcriptional mechanisms have been shown to affect the concentration of iron-containing proteins under iron or oxygen limiting conditions. In this review, we describe how the budding yeast Saccharomyces cerevisiae utilizes multiple mechanisms to optimize iron usage under iron limiting conditions.

Reference Type
Journal Article
Authors
Kaplan J, McVey Ward D, Crisp RJ, Philpott CC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference