Take our Survey

Reference: Ferre S and King RD (2006) Finding motifs in protein secondary structure for use in function prediction. J Comput Biol 13(3):719-31

Reference Help

Abstract


This paper presents a novel algorithm for the discovery of biological sequence motifs. Our motivation is the prediction of gene function. We seek to discover motifs and combinations of motifs in the secondary structure of proteins for application to the understanding and prediction of functional classes. The motifs found by our algorithm allow both flexible length structural elements and flexible length gaps and can be of arbitrary length. The algorithm is based on neither top-down nor bottom-up search, but rather is dichotomic. It is also "anytime," so that fixed termination of the search is not necessary. We have applied our algorithm to yeast sequence data to discover rules predicting function classes from secondary structure. These resultant rules are informative, consistent with known biology, and a contribution to scientific knowledge. Surprisingly, the rules also demonstrate that secondary structure prediction algorithms are effective for membrane proteins and suggest that the association between secondary structure and function is stronger in membrane proteins than globular ones. We demonstrate that our algorithm can successfully predict gene function directly from predicted secondary structure; e.g., we correctly predict the gene YGL124c to be involved in the functional class "cytoplasmic and nuclear degradation." Datasets and detailed results (generated motifs, rules, evaluation on test dataset, and predictions on unknown dataset) are available at www.aber.ac.uk/compsci/Research/bio/dss/yeast.ss.mips/, and www.genepredictions.org.

Reference Type
Journal Article
Authors
Ferre S, King RD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference