Reference: Matveeva O, et al. (1997) A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res 25(24):5010-6

Reference Help

Abstract

A technique is described to identify the rare sequences within an RNA molecule that are available for efficient interaction with complementary DNA probes: the target RNA is digested by RNase H in the presence of a random pool of complementary DNA fragments generated from the same DNA preparation that was used for target RNA synthesis. The DNA region was amplified by PCR, partially digested with DNase and denatured prior to RNA binding. In the presence of single-stranded DNA fragments the RNA was digested with RNase H such that, on average, each molecule was cut once. Cleavage sites were detected by gel electrophoresis either directly with end-labeled RNA or by primer extension. The pattern of accessible sites on c- raf mRNA was determined and compared with the known profile of activity of oligonucleotides found in cells, showing the merit of the method for predicting oligonucleotides which are efficient for in vivo antisense targeting. New susceptible sites in the 3'-untranslated region of c- raf mRNA were identified. Also, four RNAs were probed to ascertain to what extent structure predicts accessibility: the P4-P6 domain of the Tetrahymena group I intron, yeast tRNAAsp, Escherichia coli tmRNA and a part of rat 18S rRNA.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Matveeva O, Felden B, Audlin S, Gesteland RF, Atkins JF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference