Reference: Stade K, et al. (2002) A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. J Biol Chem 277(51):49554-61

Reference Help

Abstract

Yeast SUMO (Smt3) and its mammalian ortholog SUMO-1 are ubiquitin-like proteins that can reversibly be conjugated to other proteins. Among the substrates for SUMO modification in vertebrates are RanGAP1 and RanBP2/Nup358, two proteins previously implicated in nucleocytoplasmic transport. Sumoylated RanGAP1 binds to the nuclear pore complex via RanBP2/Nup358, a giant nucleoporin, which was recently reported to act as a SUMO E3 ligase on some nuclear substrates. However, no direct evidence for a role of the SUMO system in nuclear transport has been obtained so far. By the use of conditional yeast mutants, we examined nuclear protein import in vivo. We show here that cNLS-dependent protein import is impaired in mutants with defective Ulp1 and Uba2, two enzymes involved in the SUMO conjugation reaction. In contrast, other transport pathways such as rgNLS-mediated protein import and mRNA export are not affected. Furthermore, we find that the yeast importin-alpha subunit Srp1 accumulates in the nucleus of ulp1 and uba2 strains but not the importin-beta subunit Kap95, indicating that a lack of Srp1 export might impair cNLS import. In summary, our results provide evidence that SUMO modification in yeast, as has been suspected for vertebrates, plays an important role in nucleocytoplasmic trafficking.

Reference Type
Journal Article
Authors
Stade K, Vogel F, Schwienhorst I, Meusser B, Volkwein C, Nentwig B, Dohmen RJ, Sommer T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference