Take our Survey

Reference: Bosoy D and Lue NF (2004) Yeast telomerase is capable of limited repeat addition processivity. Nucleic Acids Res 32(1):93-101

Reference Help

Abstract


Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of telomere terminal repeats. Telomerase-mediated sequence addition is dictated by a short 'template' region of the RNA component. Despite the short template segment, telomerases from many organisms have been shown to mediate the synthesis of long extension products. This synthesis presumably depends on two types of translocation events: simultaneous translocation of the RNA-DNA duplex relative to the active site after each nucleotide incorporation (type I or nucleotide addition processivity), and translocation of the RNA relative to the DNA product after each round of repeat synthesis (type II or repeat addition processivity). In contrast, telomerases from yeasts have been shown to synthesize mostly short products, implying a defect in one or both types of translocation. In this report, we analyzed the processivity of yeast telomerase in vitro, and identified two position-specific elongation barriers within the 5' region of the RNA template that can account for the synthesis of incomplete first round products. These barriers respond differently to variations in nucleotide concentration, primer sequence and mutations in the catalytic protein subunit, consistent with their having distinct mechanistic bases. In addition, by using optimal primers and high concentrations of dGTP, we were able to detect significant type II translocation by the yeast enzyme. Thus, the difference between the elongation property of yeast and other telomerases appears to be quantitative rather than qualitative. Our results suggest that yeast may be a useful system for investigating the physiologic significance of repeat addition processivity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Bosoy D, Lue NF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference