Reference: Yamagata S, et al. (2003) Conversion of the aminocrotonate intermediate limits the rate of gamma-elimination reaction catalyzed by L-cystathionine gamma-lyase of the yeast Saccharomyces cerevisiae. J Biochem 134(4):607-13

Reference Help

Abstract


L-Cystathionine gamma-lyase [EC 4.4.1.1] of Saccharomyces cerevisiae was shown to bind cofactor pyridoxal 5'-phosphate, up to 2 molecules/subunit. The association constants of the enzyme for the cofactor were estimated to be 3.67 x 10(5) M(-1) and 9.05 x 10(3) M(-1). However, the latter value was too small for the binding to play a catalytic role. Changes in the absorption spectra of the enzyme in gamma-elimination reaction mixtures with various amino acids as substrates were observed at 10 degrees C to elucidate the reaction mechanism of the enzyme. The enzyme formed a chromophore exhibiting absorption at approximately 480 nm, which is characteristic of an aminocrotonate intermediate with O-succinyl-L-homoserine, L-cystathionine, L-homoserine, or O-acetyl-L-homoserine, at rates in this order. The intermediate was consumed at much lower rates than those of formation. The order of the rates of consumption was the same as the order of the formation rates and the order of the gamma-elimination activity of the enzyme with the above-mentioned substrates. These results strongly suggested that the intermediate was essential for gamma-elimination and that the reaction was rate-limited by its conversion into the product alpha-ketobutyrate. L-Cysteine sensitively inhibited the alpha, gamma-elimination activity of the enzyme, and also retarded the formation of the chromophore when it was provided to the enzyme together with a substrate. The reason for these phenomena is discussed.

Reference Type
Journal Article
Authors
Yamagata S, Yasugahira T, Okuda Y, Iwama T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference