Take our Survey

Reference: Smidtas S, et al. (2006) The adaptive filter of the yeast galactose pathway. J Theor Biol 242(2):372-81

Reference Help

Abstract


In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces GAL3 and GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response.

Reference Type
Journal Article
Authors
Smidtas S, Schachter V, Kepes F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference