Take our Survey

Reference: Kelley MR, et al. (2003) Disparity between DNA base excision repair in yeast and mammals: translational implications. Cancer Res 63(3):549-54

Reference Help

Abstract

One approach to the effective treatment of cancer requires the continued development of novel chemotherapeutic agents to kill tumor cells. Additionally, an element of cancer research has been devoted to understanding DNA repair pathways in hopes of defining the factors that confer resistance to anticancer drugs and developing strategies for modulating repair capacity as a means of overcoming resistance or enhancing sensitivity to cancer treatments. Historically, yeast, particularly Saccharomyces cerevisiae, has been used as a model system for DNA repair analyses. Additionally, it has been used to evaluate drug efficacy and selectivity, and to identify new targets for antitumor drugs. The usefulness of yeast for these types of analyses has been primarily because of it being considered to have well-conserved DNA repair processes among eukaryotes. However, as more information has accumulated in mammalian DNA repair, and particularly in DNA base excision repair (BER), a number of striking differences have emerged between yeast and mammalian (human) repair processes. The BER pathway is essential for the repair of damaged DNA induced by oxidizing and alkylating agents, which are the majority of chemotherapeutic drugs used currently in the clinic. The importance of this pathway in processing DNA damage makes its members potential targets for novel chemotherapeutic agents. However, because the BER process and its main players are remarkably divergent from S. cerevisiae to humans, it is worth keeping these differences in mind if yeast continues to be used as a model or primary system in the screening for potential new human therapeutics.

Reference Type
Journal Article | Review
Authors
Kelley MR, Kow YW, Wilson DM 3rd
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference