Take our Survey

Reference: Strobel G, et al. (2002) Competition of spontaneous protein folding and mitochondrial import causes dual subcellular location of major adenylate kinase. Mol Biol Cell 13(5):1439-48

Reference Help

Abstract

Sorting of cytoplasmically synthesized proteins to their target compartments usually is highly efficient so that cytoplasmic precursor pools are negligible and a particular gene product occurs at one subcellular location only. Yeast major adenylate kinase (Adk1p/Aky2p) is one prominent exception to this rule. In contrast to most mitochondrial proteins, only a minor fraction (6-8%) is taken up into the mitochondrial intermembrane space, whereas the bulk of the protein remains in the cytosol in sequence-identical form. We demonstrate that Adk1p/Aky2p uses a novel mechanism for subcellular partitioning between cytoplasm and mitochondria, which is based on competition between spontaneous protein folding and mitochondrial targeting and import. Folding is spontaneous and rapid and can dispense with molecular chaperons. After denaturation, enzymatic activity of Adk1p/Aky2p returns within a few minutes and, once folded, the protein is thermally and proteolytically very stable. In an uncoupled cell-free organellar import system, uptake of Adk1p/Aky2p is negligible, but can be improved by previous chaotropic denaturation. Import ensues independently of Hsp70 or membrane potential. Thus, nascent Adk1p/Aky2p has two options: either it is synthesized to completion and folds into an enzymatically active import-incompetent conformation that remains in the cytosol; or, during synthesis and before commencement of significant tertiary structure formation, it reaches a mitochondrial surface receptor and is internalized.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Strobel G, Zollner A, Angermayr M, Bandlow W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference