Reference: Geli MI and Riezman H (1998) Endocytic internalization in yeast and animal cells: similar and different. J Cell Sci 111 ( Pt 8):1031-7

Reference Help

Abstract


The internalization step of endocytosis has been the focus of several laboratories during the last forty years. Unlike some other budding events in the cell, many fundamental questions regarding the molecular machinery involved in the mechanism of budding itself still remain unsolved. Over the last few years the general picture of the field has quickly evolved from the originally simplistic view which postulated that clathrin polymerization is the major force driving budding at the plasma membrane. Refinement of the assays and molecular markers to measure endocytosis in animal cells has shown that other factors in addition to the clathrin coat are required and that endocytosis can also take place through clathrin-independent mechanisms. At the same time, recent introduction of genetic approaches to study endocytosis has accelerated the identification of molecules required for this process. The isolation of endocytosis mutants in budding yeast has been especially fruitful in this respect. Preliminary comparison of the results obtained in yeast and animal cells did not seem to coincide, but further progress in both systems now suggests that part of the divergence originally seen may be due to the particular experimental approaches used rather than fundamental differences in endocytic mechanisms. In this review we present a short historical overview on the advances made in yeast and animal cells regarding the study of endocytosis, underlining both emerging similarities and still interesting differences.

Reference Type
Journal Article | Review
Authors
Geli MI, Riezman H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference