Take our Survey

Reference: Coic E, et al. (2006) Saccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization. Genetics 173(3):1197-206

Reference Help

Abstract

Saccharomyces mating-type (MAT) switching occurs by gene conversion using one of two donors, HMLalpha and HMRa, located near the ends of the same chromosome. MATa cells preferentially choose HMLalpha, a decision that depends on the recombination enhancer (RE) that controls recombination along the left arm of chromosome III (III-L). When RE is inactive, the two chromosome arms constitute separate domains inaccessible to each other; thus HMRa, located on the same arm as MAT, becomes the default donor. Activation of RE increases HMLalpha usage, even when RE is moved 50 kb closer to the centromere. If MAT is inserted into the same domain as HML, RE plays little or no role in activating HML, thus ruling out any role for RE in remodeling the silent chromatin of HML in regulating donor preference. When the donors MAT and RE are moved to chromosome V, RE increases HML usage, but the inaccessibility of HML without RE apparently depends on other chromosome III-specific sequences. Similar conclusions were reached when RE was placed adjacent to leu2 or arg4 sequences engaged in spontaneous recombination. We propose that RE's targets are anchor sites that tether chromosome III-L in MATalpha cells thus reducing its mobility in the nucleus.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Coic E, Richard GF, Haber JE
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference