Reference: Frandsen TP, et al. (2002) Substrate recognition by three family 13 yeast alpha-glucosidases. Eur J Biochem 269(2):728-34

Reference Help

Abstract


Important hydrogen bonding interactions between substrate OH-groups in yeast alpha-glucosidases and oligo-1,6-glucosidase from glycoside hydrolase family 13 have been identified by measuring the rates of hydrolysis of methyl alpha-isomaltoside and its seven monodeoxygenated analogs. The transition-state stabilization energy, DeltaDeltaG, contributed by the individual OH-groups was calculated from the activities for the parent and the deoxy analogs, respectively, according to DeltaDeltaG = -RT ln[(Vmax/Km)analog/(Vmax/Km)parent]. This analysis of the energetics gave DeltaDeltaG values for all three enzymes ranging from 16.1 to 24.0 kJ.mol-1 for OH-2', -3', -4', and -6', i.e. the OH-groups of the nonreducing sugar ring. These OH-groups interact with enzyme via charged hydrogen bonds. In contrast, OH-2 and -3 of the reducing sugar contribute to transition-state stabilization, by 5.8 and 4.1 kJ.mol-1, respectively, suggesting that these groups participate in neutral hydrogen bonds. The OH-4 group is found to be unimportant in this respect and very little or no contribution is indicated for all OH-groups of the reducing-end ring of the two alpha-glucosidases, probably reflecting their exposure to bulk solvent. The stereochemical course of hydrolysis by these three members of the retaining family 13 was confirmed by directly monitoring isomaltose hydrolysis using 1H NMR spectroscopy. Kinetic analysis of the hydrolysis of methyl 6-S-ethyl-alpha-isomaltoside and its 6-R-diastereoisomer indicates that alpha-glucosidase has 200-fold higher specificity for the S-isomer. Substrate molecular recognition by these alpha-glucosidases are compared to earlier findings for the inverting, exo-acting glucoamylase from Aspergillus niger and a retaining alpha-glucosidase of glycoside hydrolase family 31, respectively.

Reference Type
Journal Article
Authors
Frandsen TP, Palcic MM, Svensson B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference