Take our Survey

Reference: Toshima JY, et al. (2006) Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc Natl Acad Sci U S A 103(15):5793-8

Reference Help

Abstract

Much progress defining the order and timing of endocytic internalization events has come as a result of real-time, live-cell fluorescence microscopy. Although the availability of numerous endocytic mutants makes yeast an especially valuable organism for functional analysis of endocytic dynamics, a serious limitation has been the lack of a fluorescent cargo for receptor-mediated endocytosis. We have now synthesized biologically active fluorescent mating-pheromone derivatives and demonstrated that receptor-mediated endocytosis in budding yeast occurs via the clathrin- and actin-mediated endocytosis pathway. We found that endocytic proteins first assemble into patches on the plasma membrane, and then alpha-factor associates with the patches. Internalization occurs next, concomitant with actin assembly at patches. Additionally, endocytic vesicles move toward early endosomes on actin cables. Early endosomes also associate with actin cables, and they actively move toward endocytic sites to capture vesicles being released from the plasma membrane. Thus, endocytic vesicle formation and capture of the newly released vesicles by early endosomes occur in a highly concerted manner, mediated by the actin cytoskeleton.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Toshima JY, Toshima J, Kaksonen M, Martin AC, King DS, Drubin DG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference