Take our Survey

Reference: Iwahashi Y, et al. (2006) Mechanisms of patulin toxicity under conditions that inhibit yeast growth. J Agric Food Chem 54(5):1936-42

Reference Help

Abstract

Patulin, 4-hydroxy-4H-furo[3,2c]pyran-2(6H)-one, is one of the best characterized and most widely disseminated mycotoxins found in agricultural products. Nonetheless, the mechanisms by which patulin causes toxicity are not well understood. Thus, the cytotoxicity of patulin was characterized by analysis of the yeast transcriptome upon challenge with patulin. Interestingly, patulin-induced yeast gene expression profiles were found to be similar to gene expression patterns obtained after treatment with the antifungal agricultural chemicals thiuram, maneb, and zineb. Moreover, patulin treatment was found to activate protein degradation, especially proteasome activities, sulfur amino acid metabolism, and the defense system for oxidative stress. Damage to DNA by alkylation was also suggested, and this seemed to be repaired by recombinational and excision repair mechanisms. Furthermore, the results provide potential biomarker genes for the detection of patulin in agricultural products. The results suggest the possibility of applying the yeast transcriptome system for the evaluation of chemicals, especially for natural chemicals that are difficult to get by organic synthesis.

Reference Type
Journal Article
Authors
Iwahashi Y, Hosoda H, Park JH, Lee JH, Suzuki Y, Kitagawa E, Murata SM, Jwa NS, Gu MB, Iwahashi H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference