Reference: Cline SD and Hanawalt PC (2006) Topoisomerase deficiencies subtly enhance global genomic repair of ultraviolet-induced DNA damage in Saccharomyces cerevisiae. DNA Repair (Amst) 5(5):611-7

Reference Help

Abstract


Genetic integrity depends upon the precision of all pathways that manipulate DNA. DNA repair mechanisms prevent mutations and aberrant recombination events by removing DNA damage. DNA topoisomerases maintain favorable nucleic acid topology for replication, transcription, and chromosome segregation. However, topoisomerases can also become trapped on DNA at sites of damage, and thereby, might alter the efficiency of DNA repair. The activities of the three nuclear DNA topoisomerases (Top1, Top2, and Top3) in the yeast Saccharomyces cerevisiae were examined for their influence upon the nucleotide excision repair (NER) of DNA damage induced by ultraviolet (UV) irradiation. A 10-20% increase in the global genomic repair (GGR) of cyclobutane pyrimidine dimers (CPDs) was observed with impaired Top1 or Top2 function. The GGR of 6-4 photoproducts (6-4PPs) and the strand-specific removal of CPDs from the yeast RPB2 gene were unaffected by the loss of topoisomerase activity. Even though the deletion of TOP3 conferred UV sensitivity, neither the GGR nor the strand-specific repair of UV-induced DNA damage was compromised in top3Delta yeast. Top1 and Top2 in DNA complexes near CPDs may inhibit GGR recognition of these lesions and produce protein-linked DNA breaks, resulting in CPD repair by an alternate pathway. While the physiological role of topoisomerase association with DNA damage has yet to be determined, these enzymes do not play a direct role in the NER pathways for removing UV-induced lesions in yeast.

Reference Type
Journal Article
Authors
Cline SD, Hanawalt PC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference