Reference: Vetcher AA, et al. (2006) DNA topology and geometry in Flp and Cre recombination. J Mol Biol 357(4):1089-104

Reference Help

Abstract


The Flp recombinase of yeast and the Cre recombinase of bacteriophage P1 both belong to the lambda-integrase (Int) family of site-specific recombinases. These recombination systems recognize recombination-target sequences that consist of two 13bp inverted repeats flanking a 6 or 8bp spacer sequence. Recombination reactions involve particular geometric and topological relationships between DNA target sites at synapsis, which we investigate using nicked-circular DNA molecules. Examination of the tertiary structure of synaptic complexes formed on nicked plasmid DNAs by atomic-force microscopy, in conjunction with detailed topological analysis using the mathematics of tangles, shows that only a limited number of recombination-site topologies are consistent with the global structures of plasmids bearing directly and inversely repeated sites. The tangle solutions imply that there is significant distortion of the Holliday-junction intermediate relative to the planar structure of the four-way DNA junction present in the Flp and Cre co-crystal structures. Based on simulations of nucleoprotein structures that connect the two-dimensional tangle solutions with three-dimensional models of the complexes, we propose a recombination mechanism in which the synaptic intermediate is characterized by a non-planar, possibly near-tetrahedral, Holliday-junction intermediate. Only modest conformational changes within this structure are needed to form the symmetric, planar DNA junction, which may be characteristic of shorter-lived intermediates along the recombination pathway.

Reference Type
Journal Article
Authors
Vetcher AA, Lushnikov AY, Navarra-Madsen J, Scharein RG, Lyubchenko YL, Darcy IK, Levene SD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference