Reference: Moseley JB, et al. (2006) Formin proteins: purification and measurement of effects on actin assembly. Methods Enzymol 406:215-34

Reference Help

Abstract

We describe methods for expressing and isolating formin proteins from a wide range of species and comparing quantitatively their effects on actin assembly. We first developed these procedures for purification of S. cerevisiae formins Bni1 and Bnr1 but have extended them to mammalian formins, including mouse mDia1 and mDia2 and human Daam1. Thus, the approach we describe should be universally applicable to the purification and analysis of formins from any eukaryote. Formins expressed in yeast rather than bacteria usually have improved solubility, yield, and actin assembly activity. Yields are 200-500 microg purified formin per liter of yeast culture. For some applications bacterial expression and purification is preferable, and these methods are also described. For expression of most formins, in either yeast or bacteria, we recommend using an amino terminal 6xHis affinity tag. Active FH1-FH2 containing fragments of the formins Bni1, Bnr1, mDia1, mDia2, and Daam1 are all digomeric. However, they nucleate actin filaments with variable efficiencies, as high as one actin filament per formin complex. In the last section, we outline fluorometric methods for measuring and quantitatively analyzing the in vitro activities of formins on actin nucleation and processive capping of actin filaments.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Moseley JB, Maiti S, Goode BL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference