Take our Survey

Reference: Dilova I and Powers T (2006) Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae. FEMS Yeast Res 6(1):112-9

Reference Help

Abstract


Mitochondrial dysfunction results in the expression, via the retrograde response pathway, of a concise set of genes (RTG target genes) that encode enzymes involved in the anapleurotic production of alpha-ketoglutarate. Inhibiting the rapamycin-sensitive TOR kinases, important regulators of cell growth, similarly results in RTG target gene expression under rich nutrient conditions. Retrograde and TOR-dependent regulation of RTG target genes requires a number of shared components, including the heterodimeric bZip/HLH transcription factors Rtg1p and Rtg3p, as well as their upstream regulator Mks1p. Two unresolved discrepancies exist with regard to the mechanism of RTG target gene control: (1) deletion of MKS1 results in constitutive expression of RTG target genes in most but not all strain backgrounds; and (2) RTG target gene expression has been correlated with both decreased as well as increased Rtg3p phosphorylation. Here we have addressed both of these issues. First, we demonstrate that the mks1 deletion strain used in a previous study by Shamji and coworkers contains a nonsense mutation within codon Ser 231 in RTG3 that likely accounts for the inactivity of the RTG system in this strain. Second, we confirm results by Butow and coworkers that Rtg3p is dephosphorylated as a primary response to induction of the pathway. Hyper-phosphorylation of this protein appears to be a secondary consequence of rapamycin treatment and is influenced both by strain background as well as by specific supplied nutrients. That hyper-phosphorylation of Rtg3p is also caused by heat shock suggests that it may reflect a more generalized response to cell stress. Together these results contribute toward a uniform view of RTG target gene regulation.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Dilova I, Powers T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference