Reference: Panwar SL and Moye-Rowley WS (2006) Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. J Biol Chem 281(10):6376-84

Reference Help

Abstract


Saccharomyces cerevisiae cells lacking their mitochondrial DNA (rho0 cells) respond to this loss of genetic information by induction of a program of nuclear gene expression called the retrograde response. Expression of genes involved in multidrug resistance and sphingolipid biosynthesis is coordinately induced in rho0 cells by the zinc cluster transcription factor Pdr3p. In this report, we identify a membrane protein involved in control of intracellular levels of a sphingolipid precursor as a transcriptional target of the Pdr3p-mediated retrograde response. These sphingolipid precursors are called long chain bases (LCBs) and increased LCB levels are growth inhibitory. This membrane protein has been designated Rsb1p and has previously been shown to act as a LCB transporter protein and to be a component of the endoplasmic reticulum. These earlier studies used an amino-terminal truncated form of Rsb1p. Here we employ a full-length form of Rsb1p and find that this protein is localized to the plasma membrane and is modified by N-linked glycosylation. Two glycosylation sites are present in the Rsb1p and both are required for normal LCB resistance. Mutational analysis of the RSB1 promoter revealed that two Pdr3p binding sites are present and both of these are required for normal retrograde induction of transcription. LCB tolerance is strongly increased in rho0 cells but this increase is ablated in rho0 rsb1Delta cells. Together, these data indicate Pdr3p activation of RSB1 transcription is an important feature of the retrograde response allowing normal detoxification of an endogenous sphingolipid precursor.

Reference Type
Journal Article
Authors
Panwar SL, Moye-Rowley WS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference