Reference: Guo X, et al. (2006) Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae. Bioinformatics 22(4):392-9

Reference Help

Abstract


BACKGROUND: In eukaryotic genomes, histone acetylation and thereafter departure from the chromatin are essential for gene transcription initiation. Because gene transcription is tightly regulated by transcription factors, there are some speculations on the cooperation of histone acetylation and transcription factor binding. However, systematic statistical analyses of this relationship on a genomic scale have not been reported. RESULTS: We apply several statistical methods to explore this relationship on two recent genomic datasets: acetylation levels on 11 histone lysines and binding activities of 203 transcription factors, both in promoter regions across the yeast genome. By canonical correlation analysis, we find that a histone acetylation pattern is correlated with a certain profile of transcription factor binding in the genome. Furthermore, after clustering the genes by their acetylation levels on the 11 histone lysines, the genes within clusters show distinct transcription factor binding profiles, as discovered by principle component analysis. Even after applying fairly stringent statistical measurement, most of these clusters have transcription factors with binding activities significantly deviated from the overall genome. We conclude that in the yeast genome, there is a strong correlation between histone acetylation and transcription factor binding in the promoter regions.

Reference Type
Journal Article
Authors
Guo X, Tatsuoka K, Liu R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference