Reference: Saeki Y, et al. (2005) Knocking out Ubiquitin Proteasome System Function In Vivo and In Vitro with Genetically Encodable Tandem Ubiquitin. Methods Enzymol 399:64-74

Reference Help

Abstract


At present, the 26S proteasome-specific inhibitor is not available. We constructed polyubiquitin derivatives that contained a tandem repeat of ubiquitins and were insensitive to ubiquitin hydrolases. When these artificial polyubiquitins (tUbs, tandem ubiquitins) were overproduced in the wild-type yeast strain, growth was strongly inhibited, probably because of inhibition of the 26S proteasome. We also found that several substrates of the ubiquitin-proteasome pathway were stabilized by expressing tUbs in vivo. tUbs containing four units or more of the ubiquitin monomer were found to form a complex with the 26S proteasome. We showed that tUb bound to the 26S proteasome inhibited the in vitro degradation of polyubiquitinylated Sic1 by the 26S proteasome. When tUB6 (six-mer) messenger RNA was injected into Xenopus embryos, cell division was inhibited, suggesting that tUb can be used as a versatile inhibitor of the 26S proteasome.FAU - Saeki, .

Reference Type
Journal Article
Authors
Saeki Y, Isono E, Shimada M, Kawahara H, Yokosawa H, Toh-e A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference