Reference: Meier KD, et al. (2006) Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae. Mol Biol Cell 17(3):1164-75

Reference Help

Abstract


Sphingolipids are required for many cellular functions including response to heat shock. We analyzed the yeast lcb1-100 mutant, which is conditionally impaired in the first step of sphingolipid biosynthesis and shows a strong decrease in heat shock protein synthesis and viability. Transcription and nuclear export of heat shock protein mRNAs is not affected. However, lcb1-100 cells exhibited a strong decrease in protein synthesis caused by a defect in translation initiation under heat stress conditions. The essential lipid is sphingoid base, not ceramide or sphingoid base phosphates. Deletion of the eIF4E-binding protein Eap1p in lcb-100 cells restored translation of heat shock proteins and increased viability. The translation defect during heat stress in lcb1-100 was due at least partially to a reduced function of the sphingoid base-activated PKH1/2 protein kinases. In addition, depletion of the translation initiation factor eIF4G was observed in lcb1-100 cells and ubiquitin overexpression allowed partial recovery of translation after heat stress. Taken together, we have shown a requirement for sphingoid bases during the recovery from heat shock and suggest that this reflects a direct lipid-dependent signal to the cap-dependent translation initiation apparatus.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference