Reference: Villarreal JM, et al. (2006) Nucleotide specificity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase Kinetics, fluorescence spectroscopy, and molecular simulation studies. Int J Biochem Cell Biol 38(4):576-88

Reference Help

Abstract


Phosphoenolpyruvate carboxykinases, depending on the enzyme origin, preferentially use adenine or guanine nucleotides as substrates. In this work, analyses of the substrate specificity of the Saccharomyces cerevisiae ATP-dependent enzyme have been carried out. Kinetics studies gave relative values of k(cat)/K(m) for the nucleoside triphosphate complexes in the order ATP>>GTP>ITP>UTP>CTP. For the nucleoside diphosphate complexes the order is ADP>>GDP>IDP congruent withUDP>CDP. This shows that the enzyme has a strong preference for ADP (or ATP) over other nucleotides, being this preference about an order of magnitude higher for the diphosphorylated than for the triphosphorylated nucleosides. The calculated binding free energies (kcalmol(-1)) at 25 degrees C are 7.39 and 6.51 for ATP and ADP, respectively. These values decrease with the nucleotide structure in the same order than the kinetic specificity. The binding energy for any triphosphorylated nucleoside is more favourable than for the corresponding diphosphorylated compound, showing the relevance of the P(gamma) for nucleotide binding. Homology models of the adenine and guanine nucleotides in complex with the enzyme show that the base adopts a similar conformation in the diphosphorylated nucleosides while in the triphosphorylated nucleosides the sugar-base torsion angle is 61 degrees for ATP and -53 degrees for GTP. Differences are also noted in the distance between P(beta) and Mn2+ at site 1. This distance is almost the same in the ATP, GTP, and UTP complexes, however in the ADP, GDP and UDP complexes it is 2.9, 5.1, and 7A, respectively. Experimental data obtained with a Thr463Ala mutant enzyme agree with molecular simulation predictions. The results here presented are discussed in terms of the proposed interactions of the nucleotides with the protein.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Villarreal JM, Bueno C, Arenas F, Jabalquinto AM, González-Nilo FD, Encinas MV, Cardemil E
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference