Take our Survey

Reference: Hashikawa N, et al. (2006) Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J Biol Chem 281(7):3936-42

Reference Help

Abstract

The homotrimeric heat shock transcription factor (HSF) binds to the heat shock element (HSE) of target genes and regulates transcription in response to various stresses. The Hsf1 protein of Saccharomyces cerevisiae is extensively phosphorylated upon heat shock, a modification that is under positive regulation by its C-terminal regulatory domain (CTM). Hyperphosphorylation has been implicated in gene-specific transcriptional activation. Here, we surveyed genes whose heat shock response is reduced by a CTM mutation. The CTM is indispensable for transcription via HSEs bound by a single Hsf1 trimer but is dispensable for transcription via HSEs bound by Hsf1 trimers in a cooperative manner. Intragenic mutations located within or near the wing region of the winged helix-turn-helix DNA-binding domain suppress the temperature-sensitive growth phenotype associated with the CTM mutation and enable Hsf1 to activate transcription independently of hyperphosphorylation. Deletion of the wing partially restores the transcriptional defects of the unphosphorylated Hsf1. These results demonstrate a functional link between hyperphosphorylation and the wing region and suggest that this modification is involved in a conformational change of a single Hsf1 trimer to an active form.

Reference Type
Journal Article
Authors
Hashikawa N, Mizukami Y, Imazu H, Sakurai H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference